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Chapter 1

Introduction

The main focus of this report is the extraction of the electromagnetic con-

stitutive parameters at elevated temperatures. The parameters of interest

are the complex permittivity and permeability values denoted with reference

symbols of e and/_, respectively [1]. Of the two basic techniques commonly

used [2], i.e., the resonance and transmission line, the transmission line is con-

sidered here due to its broadband capability and greater tolerance to changes

in measured values from fixture variations associated with temperature de-

pendencies.

The ability to relate constitutive parameters from measured reflection

and transmission characteristics is readily done when the cross section of a

transmission line is completely filled. Performing these measurements when

changes in fixture dimensions or a gap results between the fixture and ma-

terial sample due to temperature dependencies can result in errors. Errors

due to fixture variation can be controlled through proper fixture design and

calibration procedures. Accounting for error gaps between the sample and

fixture is not as direct [3].

The presented material focuses upon several aspects for elevated temper-

ature measurements. The upper temperature used for these measurements





was 5000F but the conceptscan be extended for higher temperature mea-

surements. The first considerationpertains to fixture designsbasedon the

sources of errors. These errors are a result of temperature expansion of the

fixture. Some of these errors may be minimized through a proper calibra-

tion technique. The next consideration is determining the most appropriate

de-embedding technique. Three different approaches will be examined. Fi-

nally, the performance of the most stable approach will be experimentally

examined.



Chapter 2

Fixture Considerations

The two most common transmission line fixtures are coaxial and rectangu-

lar waveguide fixtures. Both fixtures are operated in the frequency band of

dominant mode excitation. The coaxial fixture has the best bandwidth since

its dominant mode has no cutoff frequency. The smallest frequency a rect-

angular guide can operate at where is the wavelength is twice the dimension

of the width of the guide.

Sample preparation is the simplest in the rectangular guide since just a

rectangular sample is required. Greater care is required for the coaxial fixture

samples since concentric perimeters are needed. It is important for both

fixtures to have tight fitting samples since the most desirable de-embedded
.. . , .

technique requires a completely filled cross section. Allowing air gaps which

may occur due to thermal expansion will result in errors_ especially when the

electric field is polarized normal to the gap's surfaces. The coaxial fixture

is most susceptible since the electric field of the dominant mode is always

normal to any gap. The rectangular guide only experiences this sensitivity

when the gap occurs along the longest side walls. Figure 2.1 illustrates the

electric field distribution for the dominant mode for each fixture.

Another source of error can occur when the fixture dimensions change
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Figure 2.1: Electric field illustration for the dominant mode in coaxial and

rectangular fixtures.
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Figure 2.2: Heated waveguide setup.

as a function of temperature. One source of error arises in the change of

the relative location of the calibration reference plane due to an elongation

of the fixture's length. However, this is not the only change that will oc-

cur. Deformation of the fixture's cross section will also occur and perturb

the measurements. These perturbations can require that a calibration be

performed at the operational temperature.

The effects of heating the waveguide were measured by inserting the

shorted end of the fixture in an electric oven and observing the reflected

field as a function of temperature. The calibrated results are shown in. Fig-

ures 2.3 through 2.5. The calibration technique used is discussed in [5, 6] and

was performed at room temperature. Figure 2.2 illustrates the experimental

setup used to heat the dielectric samples.

Figures 2.3 through 2.5 indicate that, although there is a change in phase

as a function of temperature, this change seems to be relatively constant as

a function of frequency. It was initially felt that the increased length of the

waveguide would cause the phase of the heated short to change as a function

of frequency. However, it is necessary to consider that the width of the

5
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waveguide is also increasing. An analysis of the phase dependencies supports

the measured results. The change in phase is a result of two components.

One is dependent upon the length of the waveguide, l, and the other is the

width of the guide, a. Expanding the difference of the phase for two different

temperatures yields,

A4) = _6_(l + El)It1 - f_0i]T0 (2.1)

where _6. and flo are the propagation constants at elevated and room tem-

peratures, respectively and 6 the coefficient of linear expansion. Expanding

_6. as a function of width yields

Ofl06a (2.2)

Inserting Equation (2.2) into Equation (2.1) and retaining first order terms

yields

ua
(2.3)

where

/_o = 1- c (2.4)

Notice that the terms multiplying these two components, 15o and o__ move8a 1

inversely as functions of frequency in such a way that the change in phase A_

I'2_ _ 0). It was assumed that expansionremains approximately constant x 61

occurred as a linear function of length. This assumption yields results which

are in excellent agreement with measured results as shown in Figures 2.3

through 2.5.



The calibration performed at room temperature effectively removeser-

rors due to discontinuities in the system at room temperature. When the

waveguideis heatedthesediscontinuitiesare no longer at the same position

relative to the calibration. The calibration becomes increasingly ineffective

in removing the signal error due to these discontinuities as the fixture tem-

perature is increased. This is evident as the small ripples observed in the

magnitudes of Figures 2.3 through 2.5.

Another consideration of fixture design is the mechanical resistance to

physical deformation at elevated temperatures. It is felt that the wall thick-

ness should be kept at a minimum to insure convenient uniform heating

of the sample. For tested temperatures below 500 ° F, commercial X-band

waveguides performed well as fixtures. Increasing the wall thickness would

increase the amount of time and cost to heat a material sample. However, the

thickness should be sufficient to locally maintain the fixture's cross section.

In conclusion, calibrating a system at room temperature and then ad-

justing the phase of the heated systemby simply taking into consideration

the change in the length of the waveguide is not a good practice. If cali-

brations performed at room temperature are used in measurements at ele-

vated temperatures, the phase adjustment has to be appropriately adjusted.

The observed magnitude variations are also of importance. Their correction

would be impractical. As previously stated however, performing a separate

calibration at each temperature achieves the best results.
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Chapter 3

Parameter Extraction

Methods

Three different methods of extracting the constitutive parameters from ma-

terials are considered in this chapter. All three methods consist of measuring

the scattering properties (reflection and transmission) of a material sample

whose electrical properties are desired. The sample(s) are placed inside a rect-

angular waveguide with cross sectional dimensions of the waveguide. These

measurements are performed at room temperature for frequencies between

8 and 12 GHz. An HP 8510 network analyzer was used to collect the data.

The data was calibrated as discussed in [5, 6]. The material sample load

used in all three cases was a ceramic material with approximate constitutive

parameter values of er = (8,0) and IZr = (1,0).

In general the parameter extraction can be performed with various sample

geometries as shown in Figure 3.1 [3]. The following methods used only the

completely filled case.

11
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Figure 3.2: Experimental configuration for the two port extraction method.

I Two Port Method

The two port method is the traditional method of explicitly extracting the

constitutive parameters from measured Sn (reflection) and $21 (transmis-

sion) parameters. The experimental configuration used in measuring the re-

flection and transmission coefficients is shown in Figure 3.2. The commonly

used expressions to obtain the constitutive parameters are:

and

I+F Ao

_" - 1- r AXo (3.1)

er ---- _ --
#,

(3.2)

where

r= K + v/_- I (3.3)
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with

K = s], + 1
2Sn (3.4)

and

1 [ 1 In 1]: (3.5)
h,- YJ

and

T = Sn + S21 - F (3.6)
1 - (Sn + sn)r"

Note that the sign in Equation (3.3) is chosen to insure Irl < 1, Xo =

_/1 -(_)_ d is the sample length, a is the waveguide width and that In-_

is modulo j2:rn where rt is the integer of _. The proper value of n can be

estimated with the integer value of

[fO'] (3.7)
n=Int L27rJ

where q" is the derivative (slope) of the phase for the transmission coefficient

T with respect to frequency and f is frequency.

Notice that the thickness of the material sample, d, should be such not

to form a deep null in the reflection measurement (Sn). Such an occurrence

results in error due to a division by a small number (see Equation (3.4)).

A comparison between the extracted Sn and 5'21 and a calculated Sn and

S_ again calculated using an e, = (8,0) and _t, = (1,0) is shown in Figures

3.3 and 3.4, respectively for a sample thickness of d = .15. The extracted e,

and g, are shown in Figure 3.5.

14



Figures 3.5 and 3.6 show the real components of the relative constitutive

parameters. The imaginary components were approximately equal to zero.

As suggested in Figure 3.5, the extracted parameters are extremely sensitive

to even slight variations in ,5'11 and 321. Performing frequency averaging on

$11 and $21 prior to the parameter extraction improves the results as shown

in Figure 3.6. As shown later, the final method considered in this chapter is

much less sensitive to small variations in the measured response.

15
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II Offset Load In A Shorted Waveguide

The second method was developed to take measurements at elevated temper-

atures allowing the user to place a shorted waveguide containing a dielectric

sample into an oven. This method has the advantage of requiring to maintain

only one fixture end at room temperature. The two port method forces two

fixture ends to be cooled.

This method consists of placing the sample a distance l away from a

short placed at the end of the waveguide. The experimental configuration is

shown in Figure 3.7. The extraction of the constitutive parameters can then

be accomplished from one reflection measurement using signal processing

techniques to effectively recover the two port reflection and transmission

measurements. Letting Ft represent the total reflection coefficient, the Sn

and 5'2, scattering parameters are related as follows,

Ft = Sn - S_le-J2_°t
1 + She -j2_ot

(3.s)

where fl0 is the propagation constant of the empty waveguide and l is the

distance from the back face of the load to the short.

Examining the response of rt in the time domain Figure 3.8, a series

of pulses is observed which allows the desired parameters to be obtained.

Comparing the pulses in this figure to the terms Equation (3.8), the first

pulse corresponds to Sn while the second pulse is identified as -S_1 once the

second term of Equation (3.8) is expanded. The desired scattering parameters

can then be recovered through signal processing techniques as discussed in

[3].

The frequency response for the first pulse can be recovered using a moving

2O
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Figure 3.7: Experimental configuration for a 1-port extraction method with

the sample placed a distance l from a short.

average upon the measured data Ft when the phase reference is centered at

the front face of the sample. This is equivalent to a time domain gating ap-

proach. The moving average technique performs a weighted average around

the i °' point using the neighborhood of n points. Increasing the value of n

effectively tightens the time gating window.

The second pulse consisting of -S_1 can be recovered in a similar manner

but first the second pulse has to be positioned at t = 0. This is accomplished

by multiplying the measured response by a phase factor of e jzat. It may be

necessary, depending on the thickness of the load, to add additional phase in

order for the second pulse to be centered exactly at t = 0. This additional

phase shift can be determined by simply multiplying the adjusted data by

an additional phase factor until the signal is sufficiently centered. Significant

distortions can occur if the. pulse is not centered. After the second pulse has

been isolated it is necessary to remove the additional phase factor.

Increasing the distance l spreads out the pulses in the time domain. This

has the effect of requiring fewer points to be averaged, and hence a broader

21
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time domain window, when extracting the desired port'on of Ft. Distortion in

the extracted portion of the signal is reduced since the time window is more

uniform about the critical portion of Ft. Increasing l too much, however,

causes the fixture to become overly frequency sensitive. It should also be

noted that the required accuracy in l is increased as _ increases•

Extracting $11 and S2a from the data of Figure 3.8, e, and #, cal_ be re-

covered using Equations (3.1) through (3.6). The real components of relative

constitutive parameters are shown in Figure 3.9. The imaginary components

were again approximately equal to zero.

As indicated in Figure 3.9, the extracted constitutive parameters are rea-

sonable in the low to mid frequency range (8 - 11 GHz), however the results

breakdown at higher frequencies. Although this method has the desirable
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quality of requiring a single reflection measurement to extract the constitu-

tive parameters it suffers as a result of the required signal processing. The

frequency averaging, although effective in removing signals about t = 0, also

introduces distortion into the portion of the signal to be extracted. This is

a result of the time window not being a perfect square filter but rather a

sinc function about t = 0. In addition the uncertainty in properly position-

ing the $21 contribution at t = 0, for extraction constitutes an undesirable

weaknesses with the method. For these reasons, a slightly different method

of extracting the constitutive parameters, still using a 1-port approach, is

presented in the next section.
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Figure 3.10: Experimental configuration for the one port method using two

different sample thicknesses to extract the constitutive parameters.

III Shorted Load In A Waveguide

The final method consists of taking two reflection measurements with two

different sample thicknesses dl and da. The samples in this case are to be

placed against the short (i.e. g = 0) as shown in Figure 3.10. This has the

benefit of not requiring a known separation distance, g. An error in this

distance can generate considerable error in the extracted parameter values.

The parameters can be obtained by using a Newton-Raphson iteration

technique. The functionaJs to be driven to zero can be simply formed by the

difference of the measured and calculated quantities as shown below:

Fa = -,1 - (3.9)

F, = F_"- F,'_ ""°. (3.10)

The search involves iterating on e, and #, until the following two functionals
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are driven to zero. The iteration commonly takes the form of

(3.11)

and

(3.12)

where

Ag =
J

(3.13)

and

Fa__v F, a___F

J
=

(3.14)

with

J

BE,
Oe (3.1s)

The calculated quantities can be obtained using Equation (3.8) with l

set to zero. The scattering parameters are calculated with the following

expressions:

$11 = (1 - T_(e,v))F(e,V) (3.16)
(1 - T2(e,v)r'(e, _))

and

S2,= (1- r_(_,_))T(e,_) (3.17)
(1 - T2(E,_)r_(_,_))
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where

T = e-J_ xl "5;-_'_ (3.18)

and

- 1
F= V_rXl

V/'_-_x-_ + 1
X1

(3.19)

( ___A____ with Ao being the free

space wavelength, c the speed of light and a is the width of the rectangular

guide.

The measured _thin and _thlek_'11 _'11 are shown in Figures 3.11 and 3.12, respec-

tively. The real components of the relative constitutive parameters er and/_r

are shown in Figure 3.13. It is interesting to note that although the quality of

the measured response is comparable to that used in the two port example,

the extracted parameters are much smoother. This method appears to be

less sensitive to the small variations that exist in actual measurements. The

explanation for this stabihty appears to be due to the need of only one cali-

bration reference unlike the two port method where two calibration references

are needed.

The next chapter employs this method to extract the constitutive param-

eters when the waveguide/sample is heated.
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Chapter 4

Extraction Performance at

Elevated Temperatures

The best method for extracting material parameters appears to be to make

two reflection measurements with a short placed at the rear face of the sam-

ple. The most accurate constitutive parameters can be acquired if the sample

can fill the cross section of the guide for the desired temperature. Significant

gaps resulting from thermal expansion can be accounted for as indicated in

[3]. For small gaps the approximate formulas in [4] may be of value.

Figure 4.1 illustrates the experimental setup used to extract the desired

$11 measurements. Two different fixtures were used in acquiring elevated

temperature measurements. The simplest fixture consisted of commercially

available copper X-band waveguide. This fixture worked well for the moder-

ate elevated temperatures considered here (< 500 ° F). A second waveguide

was fabricated from 316 stainless steel to withstand oxidation and fixture de-

formation considerations experienced at higher temperatures. The advantage

of the first fixture occurs with its thinner wall thickness in comparison to the

thicker wall thickness of the second fixture. Using a fixture with thinner walls

allows fast heating times which is very desirable for very elevated temper-

atures. The need for thicker wails arises from the requirement to maintain
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Figure 4.1: Experimental configuration for the heated 1-port method using

two different sample thicknesses to extract the constitutive parameters.

an uniform and straight interior fixture cross section. Figures 4.2 and 4.3

illustrates the stainless steel fixture used.

Figures 4.4 through 4.6 represent extracted values for the relative consti-

tutive parameters for the ceramic load used in the previous chapter at several

temperatures. These measurements were made using the thin walled copper

alloy fixture. Although the material sample used did not undergo any pro-

found changes as a function of temperature, the results dearly indicate the

effectiveness of this method in extracting the parameters when the sample is

heated.

The calibration used for these measurements involved a unique calibration

set for each temperature. The collection of measured data involved in-this

chapter consisted first of performing the necessary reflection measurements to

determine the calibration constants at each temperature. Next, the reflection

measurements for each material sample are performed at each temperature.
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Figure 4.3: Mechanical drawing for stainless steel, X-band waveguide fixture.
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Chapter 5

Conclusions

Three different methods of extracting constitutive parameters from a sample

placed in a waveguide fixture were examined. The three methods consisted of

a 2-port approach, a 1-port approach with the sample placed a distance t from

a short, and a 1-port approach using two different sample thicknesses placed

against a short. The final method was found to yield the best results. This

is believed to be a result of requiring only one type of calibration procedure

(reflection). Potentially, errors might result when an inconsistency may exist

between independent calibrated reflection and transmission measurements.

The 1-port approach, using two different sample thicknesses, was then

used to extract the constitutive parameters when the sample end of the

fixture was heated in an electric oven. The results of these measurements

demonstrated the effectiveness of this method in extracting constitutive pa-

rameters when the sample is heated.

Finally, it should be emphasized that, due to the sensitivity in the ex-

traction process, it is strongly recommended that calibrations be performed

at each temperature when performing the parameter extractions at elevated

temperatures.
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